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a b s t r a c t

Saline habitats support both halophilic fungi (having an obligate requirement for salt for

their growth) and halotolerant fungi (not needing salt for growth but capable of growth

in the presence of salt). Halophilic fungi are exceptional since they are restricted to hyper-

saline habitats and there is not enough information about these fungi of various types of

saline environments. However, due to their co-occurrence with halophilic microorganisms

and their wide range of salt tolerance, the ecosystem services provided by halotolerant

fungi in saline environments require attention. The fact that halotolerant fungi do not exist

as mere inactive resting structures and that they tolerate different strengths of external

salt stress are indicative of their sustained ecological roles in saline environments as

well as in normal environments experiencing extreme salinity conditions with some regu-

larity. Here, we underscore the need to study halotolerant fungi with more zeal to under-

stand their ecological roles in saline ecosystems.

ª 2023 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
1. Introduction Plemenita�s et al., 2014) and halotolerant fungi which are
Hypersaline environments which are thalassohaline (formed

from seawater inwhich sodium chloride is themost abundant

salt), like any other extreme environment, are highly selective

and support only microbes adapted to grow in high salinity.

Though fungi have evolved to tolerate different abiotic

stressors including high salinity (Coleine et al., 2022), it is the

prokaryotes, particularly the archaea, of extreme environ-

ments which have been studied more intensely (Zhu et al.,

2020; Coleine et al., 2022; Zheng et al., 2022; Hu et al., 2023). It

is only recently that halophilic fungi which have an obligate

requirement for salt for growth (Kis-Papo et al., 2014;
T. S. Suryanarayanan).

. Published by Elsevier L
adapted to survive in normal as well as high salt environ-

ments (Zajc et al., 2012; Azpiazu-Muniozguren et al., 2021)

have been studied in more detail. The halotolerant fungi do

not exist as mere inactive resting structures in hypersaline

habitats and are adapted to tolerate different strengths of

external salt stress. This indicates their heightened ecological

fitness and sustained ecological roles in saline environments

as well as in normal environments experiencing extreme

salinity conditions with some regularity. With reference to

marine fungi, generally two ecological types are recognised:

the obligate marine fungi which grow and sporulate exclu-

sively in marine habitat, and the facultative marine fungi
td. All rights reserved.
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occur which in freshwater habitats but could be isolated from

different marine habitats (Kohlmeyer and Kohlmeyer, 1979).

Although this definition or its variations (Overy et al., 2014)

are used to broadly classify the marine fungi ecologically,

studies are needed to confirm if all ‘obligate’ marine fungi

are strictly so. For instance, the black yeast Hortaea werneckii

which is found in natural hypersaline environments and

seawater, can grow in NaCl concentrations ranging from 0 to

30% (Zalar et al., 2019). Thus, it is necessary to investigate

more intensely the halotolerant fungi to appreciate their role

in saline ecosystems.

2. Halotolerant fungi in hypersaline habitats

It is generally assumed that hypersaline habitat is compara-

tively simpler (Shu and Huang, 2022) due to its depauperate

microbial species diversity. However, investigations on halo-

philic archaea and bacteria reveal that hypersaline habitats

are more complex than expected (Oren, 2002). Solar salterns

formed by the evaporation of sea water are among the hyper-

saline habitats whose microbial diversity has been studied in

greater detail (Gunde-Cimerman et al., 2004). Salinity is usu-

ally expressed as ppt or as PSU (practical salinity unit) which

is based on water temperature and conductivity measure-

ments (Fofonoff, 1985). The average salinity of seawater is

34e35 PSU; evaporation of sea water leads precipitation of

the salts (mainly NaCl) thus increasing its salinity which could

as high as 300 PSU (Gostin�car et al., 2009). It is well known that

archaea and bacteria survive in salterns (Chung et al., 2019); it

is only recently recognised that fungi too survive in solar

salters and there is little information on their roles in such hy-

persaline ecosystems (Gunde-Cimerman et al., 2004; Ali et al.,

2013; Chung et al., 2019). Interestingly,many of the fungi of hy-

persaline environments including salt lakes, solar salterns,

and mangrove ecosystem are halotolerant rather than halo-

philic (Plemenita�s et al., 2014). Thirunavkkarasu et al. (2017)

showed that halotolerant fungi of solar salterns of southern

India do not have an obligate requirement for salt for their

growth and could grow in the highest salt concentration tried

in this study (20% NaCl). These fungi also occur as parasites

(Soler-Hurtado et al., 2016) or non-pathogenic endosymbionts

of marine organisms including sponges (Thirunavukkarasu

et al., 2012), and endophytes of sea grasses (Venkatachalam

et al., 2015) and seaweeds (Govinda Rajulu et al., 2022). In

terrestrial plants, associationwith endophytic fungal partners

increases the host plant’s performance by enhancing its resis-

tance/tolerance to abiotic (Suryanarayanan and Uma

Shaanker, 2021) and biotic (Estrada et al., 2013) stress. Some

endophytes of terrestrial plants are potential pathogens and

could initiate disease in their host plants under conditions

favouring pathogenesis (Collinge et al., 2022). No such infor-

mation is available on the role of halotolerant fungal endo-

symbionts of marine organisms with respect to their

contribution to their hosts’ ecological fitness.

3. Halotolerant fungi of mangrove ecosystem

Mangroves are salt tolerant ecotones between terrestrial and

marine ecosystems. Tropicalmangrove soil is an environment
experiencing high variability in salinity due to tidal variations

(Tomlinson, 1994) and vagaries of precipitations and cyclones.

Fungi are associatedwithmangrove roots (both as endophytes

and surface fungi), decaying leaves, roots, and wood; they are

also associated with drift wood, intertidal grasses, algae, crus-

taceans, corals, mollusc shells, sediments and soils of

mangrove ecosystem (Jones et al., 2009; Kumaresan et al.,

2021). Paranetharan et al. (2022) report that fungal endophytes

of mangrove roots do not require salt for their growth and

could grow in medium with 4.5% NaCl concentration which

is more than that of the seawater. Fungal endophytes of the

aerial parts of mangroves such as those of the leaves, though

not in direct contact with the seawater, are halotolerant.

Mangrove leaves accumulate salt to high levels (Cram et al.,

2002). Popp et al. (1984) found that the salt levels in the leaves

of 23mangrove species were similar to that of sweater. Hence,

mangrove leaf fungal endophytes should be adapted to

tolerate salt stress. Kumaresan et al. (2002) confirmed this by

showing that mangrove foliar fungal endophytes are haloto-

lerant and could grow in a medium containing twice the

amount of salt as that of seawater.
4. Strategies of halotolerant fungi to survive
in saline habitats

Halotolerant fungi possess a wide range of survival strategies

to adapt to the osmotic stress resulting due to the low water

availability in saline environment. Due to the high external

ionic concentration in thalassohaline environments, Naþ en-

ters the cell leading to the impairment of cell membranes

(Plemenita�s et al., 2014). To counter ion entry, halotolerant

fungi synthesise and accumulate polyols such as glycerol

erythritol, arabitol and mannitol which do not interfere with

the normal cell metabolism (Gunde-Cimerman et al., 2018).

Termed compatible solutes, such low-molecular-weight

organic compounds aid in maintaining a positive turgor pres-

sure at high external salt concentrations. In several halotoler-

ant fungi, the activity polyol metabolism enzymes

(Ravishankar and Suryanarayanan, 1998) and compatible so-

lute concentration increases with increasing external salinity

(Plemenita�s et al., 2014). Using halotolerant black yeastHortaea

werneckii and halophilic fungus Wallemia ichthyophaga,

Plemenita�s (2021) showed that though both the fungi use the

high-osmolarity glycerol (HOG) signal transduction pathway

for adapting to the external salinity, the mechanism of activa-

tion of this pathway differs between them. Even though the

synthesis of compatible solutes tomaintain turgor is metabol-

ically expensive than accumulating Naþ in vacuoles as halo-

philic vascular plants do, this method is not seen in fungi

possibly owing to the reduced vacuole size characteristic of

mycelial fungi (Clipson and Jennings, 1992). Melanin deposi-

tion on the cell wall to increase its strength to counter osmotic

shock experienced by fungal hyphae exposed to constantly

changing external salinity is another strategy developed by

halotolerant fungi (Elsayis et al., 2022). The black yeast Hortaea

werneckii deposits melanin in its cell wall as an adaptation to

survive in hypersaline environments (Kej�zar et al., 2013).

Ravishankar et al. (1995) observed that the hyphae of Cirrenalia

pygmea, a halotolerant, saprotrophic mangrove root fungus,
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owing to melanised cell walls could withstand sudden

external osmotic changes; however, upon inhibition of

melanin synthesis, the hyphae exploded at their tips when

subjected to osmotic shock. Furthermore, melanin deposition

on hyphae increases with the increase in external salinity

(Ravishankar et al., 1995). In this fungus, the unsaturation in-

dex of fatty acids decreases with increasing external salinity

implying that the membranes become more rigid to retain

the internal compatible solutes (Hosono, 1992; Ravishankar

et al., 1994). Furthermore, it appears that different genes of

halotolerant fungi get activated under different salt stress

strengths. We observed that a Talaromyces stipitatus isolate (a

mangrove endophyte) produced different isoforms of chitin

modifying enzymes under different external salt concentra-

tions (Paranetharan et al., 2018); besides, a Trichoderma harzia-

num endophytic in the brown seaweed Sargassum wightii, is

capable of growing in 1.2 M NaCl and secretes more xylanase

and xylosidase enzymes in NaCl-amended growthmedia than

when cultured without the salt (Thirunavukkarasu et al.,

2015). These results and that the physiological responses of

halophilic fungi differ greatly with reference to external

salinity and are not mere quantitative alteration of metabo-

lites (P�erez-Llano et al., 2020) indirectly inform salt-induced

gene activation. Hence, direct studies as done with Bacillus

sp (SX4) where more than 100 genes are up and down regu-

lated as a response to different levels of salt stress (Zhang

et al., 2021) are needed to understand the physiological

response of fungi to salt stress. Although the described adap-

tations partially explain the success of halotolerant fungi in

occupying niches varying from very low to high salt concen-

trations, detailed molecular studies including the use of dele-

tion mutants of genes coding for stress tolerance would

provide critical insights into the survival strategies of these

fungi.

The most common, and usually dominant halotolerant

fungi of salterns (Cantrell et al., 2006; Evans et al., 2013), endo-

phytes of brown, green and red seaweeds (Suryanarayanan

et al., 2010; Govinda Rajulu et al., 2022) and seagrasses

(Venkatachalam et al., 2015), as well as endosymbionts of ma-

rine sponges (Thirunavukkarasu et al., 2012) include species

Cladosporium, Aspergillus, and Penicillium. A monthly screening

of saltern from southern India for ten months revealed that

species of Aspergillus persist irrespective of the season

(Suryanarayanan et al., 1996). Generally, many extremotoler-

ant fungi including halotolerant ones are anamorphic forms

reproducing only asexually and hence, it is possible that the

random process of genetic drift could establish alleles in indi-

viduals enhancing their phenotypic plasticity thus aiding in

the adaptation of mesophilic fungi to survive in extreme hab-

itats (Gostin�car et al., 2009). Interestingly, the cellular re-

sponses and molecular mechanisms to combat salinity

stress vary between the halophilic and halotolerant fungi.

Genome and transcriptome analysis showed that the number

of genes activated by salinity and the physiological response

to salinity in halophilic and halotolerant Aspergillus species

differ widely (Tafer et al., 2019). The halotolerant ones possess

extraordinary genetic redundancy and a comparatively recent

whole genome duplication attesting to their heightened

adaptability (Plemenita�s et al., 2014). Such a panoply of differ-

ence at the gene level partly explains the metabolic and the
consequent ecological flexibility of the halotolerant fungi.

This also suggests that the metabolic patterns (Vaupotic

et al., 2008) of halotolerant and halophilic fungi may not over-

lap to a great extent such that the former are not redundant

with reference to their ecological functions in saline habitats.
5. Ecological role of halotolerant fungi

The adaptability of halotolerant fungi to occupy normal and

extreme environments reflects their heightened ecological

fitness and phenotypic plasticity. Their constant presence

and ability to grow in different external salt concentrations

lend evidence to the fact that halotolerant fungi contribute to

the functions of saline ecosystem. In mangrove ecosystem

where soil and water salinity are widely fluctuating, the halo-

tolerant fungi which possess a wide spectrum of salt tolerance

ability are most suited to survive. Though it is known that

fungi play a key role in lignocellulose mineralization in

mangrove ecosystem (Thatoi et al., 2013), the specific role of

halotolerant fungi in this process is not known. Recent studies

show that salt alters the composition and activity of secreted

lignocellulolytic enzymes of halotolerant fungi of mangroves.

Mangrove root endophytes elaborate salt induced and salt

tolerant cellulase, b-glucosidase, and laccase enzymes

(Paranetharan et al., 2022). In the halotolerant mangrove fun-

gus Pestalotiopsis sp., the presence of salt increases the secre-

tion of xylanases and cellulases and reduces the production

of oxidases (Arfi et al., 2013). Halotolerant fungi associated

with deep sea sponges elaborate halotolerant xylanases and

peroxidase/phenol oxidases (Batista-Garc�ıa et al., 2017). With

such a broad arsenal of salt tolerant biomass destructuring en-

zymes (Arfi et al., 2013), it is conceivable that these fungi

contribute to nutrient recycling in the dynamic tropical

mangrove soil habitat (Paranetharan et al., 2022). Apart from

themangrove soil fungi and root endophytes, the halotolerant

fungal endophytes of mangrove leaf also appear to play role in

nutrient recycling. Some of these foliar endophytes switch to a

saprotrophic mode and grow faster on senesced mangrove

leaves (Kumaresan and Suryanarayanan, 2002), and produce

an array of biomass degrading enzymes including cellulase,

laccase, pectate transeliminase, and tyrosinase (Kumaresan

et al., 2002, 2021) indicating their participation in nutrient recy-

cling in themangrove ecosystem. Similarly, in Trichoderma har-

zianum, a halotolerant endophyte of the brown alga Sargassum

wightii, different salt concentrations induced a three-fold in-

crease in the secretion of biomass degrading enzymes xyla-

nase and xylosidase (Thirunavukkarasu et al., 2015).

Interestingly, not only themicrobes and their enzymes, but

their secondarymetabolite productionmay also be influenced

by salt concentration. Some of the salt tolerant fungi of solar

salterns produce antifungal and antibacterial compounds

(Panchal et al., 2022; Wingfield et al., 2023) suggesting that

theymay have a role in influencing themicrobial composition

of saline environments. Sepcic et al. (2010) showed that

external stress including salinity induces halophilic fungi to

produce specific bioactive metabolites. In the absence of any

direct proof, such basic findings lead to a syllogistic conclu-

sion that halotolerant fungi contribute to the microbial

composition and nutrient status of saline habitats.
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6. Conclusion

Many questions regarding halotolerant fungi remain unan-

swered. Their diversity (Zalar et al., 2007, 2008; Fryar et al.,

2019), range and mechanism of salt tolerance, and trait alter-

ations under different degrees of salt stress have to be

addressed to appreciate their ecological roles. Although their

degree of halotolerance varies, the universal presence of spe-

cies of Aspergillus and Penicillium in saline environments

(Frisvad, 2005), as endophytes of seagrasses (Venkatachalam

et al., 2015) and seaweeds (Suryanarayanan et al., 2010) and

as endosymbionts of marine sponges (Thirunavukkarasu

et al., 2012) indicates their wide ecological amplitude.

Although the same species of these fungi could exist in these

ecological niches, it is not clear if there is trait difference be-

tween them as a consequence of their interaction between

cooccurring microbes which are bound to differ with these

niches. Marine isolates of Aspergillus sydowii cause disease in

corals while the terrestrial isolates are not pathogenic indi-

cating the existence of different ecotypes of this fungus

(Alker et al., 2001). To summarise, halotolerant fungi neces-

sarily have evolved the ability to survive under different levels

of salt stress. Although it is not clear if selection pressure

guided the evolution of phenotypic plasticity of these fungi

or whether such fungi are ecophenes, it is possible that such

flexibility goes with alterations in the expression of different

tolerance related genes. With such trait versatility expressed

by halotolerant fungi, information on the ecology of saline en-

vironments is bound to be incomplete sans studies on these

fungi. Apart from culture dependant investigations, multiple

omics studies are needed to unravel the biodiversity and func-

tional variations of halotolerant fungi to understand their role

in the ecological process of saline environments (Li et al.,

2021).
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